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Abstract

Stability of natural convection in porous media differs from that in Newtonian fluid due to the changes of the

thermal inertia and the friction. This paper aims to investigate the natural convection and its stability in a toroidal

thermosyphon filled with porous media. The flow and temperature fields were numerically simulated and compared

with that of Newtonian fluid. The results predicted two obvious local reversal flows near the connections of heating and

cooling halves. A one-dimensional model was proposed which described qualitatively the occurring and stability of the

thermal convection. The model suggested that the flow stability depends largely on the Prandtl number. The global flow

can probably be chaotic only if the Prandtl number is finite. Contradictions of the conclusions drawn by different

researchers were also discussed. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural (thermal) convection in porous media

received broad researches, because of the extensive engi-

neering backgrounds. As a common feature of B�eenard–
Darcy convection (BDC), the porous layer is subjected

to a temperature gradient inverse to the gravity or cen-

trifugal force. Due to the changes of the hydraulic and

thermal properties, the stability of porous natural flow

differs very much from that of Newtonian flow. The in-

homogeneities of the permeability and the thermal

conductivity brought about by the presence of the solid

substance affects greatly the stability as well.

The time-dependent convective patterns in horizontal

porous layers have been studied, on the basis of Darcy’s

law and related to the instability of the thermal bound-

ary layers [1–10]. This kind of instability dominates in

the limit of infinite Prandtl number, that Pr0 ! 1. This

means that such instability is not affected by the inertia

force. If the condition of 1=Pr0 ¼ 0 is relaxed, the stability

problem of a different nature is encountered. The thermal

inertia force under this condition can act to maintain the

flow direction even opposing the buoyant force and bring

about the instability of the flow directions, from which

chaos arises [11,12]. The chaos prevails in the whole

system at large Rayleigh numbers and leads finally to the

turbulent flow.

On considering the criteria of the occurring and sta-

bility of global convection, some dynamical scenarios

were proposed. Those models were derived by one-

dimensional Fourier expansion [13] or by two-dimen-

sional Galerkin expansion [11,12] of the governing

equations. Sen and Torrance [13] suggested that the

global flow is always stable in their annulus. Vadasz and

Olek [11] established a two-dimensional model for flow

in rotating cavity by the method of Lorenz [14], which

numerically predicted a global Lorenz-like unstable flow

behavior. The point is, whether the global unstable flow

exists in porous media. Early in 1984, Curry et al. [15]

showed that the second-order nontrivial truncation of

the Galerkin expansion is certainly not valid as a rep-

resentation of convection. The same problem exists in

modeling porous flow. Masuoka [12] simulated the flow

behaviors of a two-dimensional porous layer. The results

indicated that at small Prandtl numbers, the chaotic
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flow is thermal inertia dependent where the Lorenz-like

chaos is possible. And at large Prandtl numbers, the flow

structure is localized. The chaos occurs via intermittency

of local flow modes in the thermal boundary layers and

is hence different in nature from the former.

On the other hand, the Lorenz-like chaotic alterna-

tions of flow direction in Newtonian liquid were exper-

imentally observed in a toroidal thermosyphon [16–18],

which was well described by the Lorenz model [17,19].

The phenomenon is undesirable in solar water systems,

nuclear reactors and geothermal energy systems etc.

Previous researchers tried to eliminate the phenomena

either by active control [19,20] or by varying the

boundary conditions [21]. Filling the loop with porous

media may be another choice, which needs comprehen-

sive examination (the subject of this paper). This work

aims to investigate the natural convection in the loop

(see Fig. 1) filled with homogeneous porous media.

The real flow patterns, the non-Darcian effects on flow

behaviors, and the validity of one-dimensional simpli-

fying were discussed according to the numerical results.

A one-dimensional model was tentatively proposed,

Nomenclature

ae thermal diffusivity of porous media ðm2=sÞ
CE Ergun constant

C0
E See Eq. (9)

Da Darcy number, K=r20
g gravity accelerator ðm=s

2Þ
h heat transfer coefficient ðW=ðm2 �CÞÞ
hr, hu, hh Lam�ee coefficients
k thermal conductivity ðW=ðm �CÞÞ
K permeability ðm2Þ
Nu Nusselt number, ð2hr0Þ=ke
Nu peripherally averaged Nusselt number,

ð2
R p
0
ðoU=orÞ j1 duÞ=

R p
0
ðUb � UwÞdu

P ; P 	 pressure, P ¼ P 	=ðael=KÞ
Pr Prandtl number, tf

ae
Pr0 equivalent Prandtl number of porous media,

re
Da Pr.

r	; r radial coordinate, r ¼ r	=r0
r0 torus section radius (m)

R;R	 pipe radius of curvature, R ¼ R	=r0
Ra Rayleigh number, ðqfgbðTh � TcÞr0KÞ=aelf

Re Reynolds number, ¼ ð2w	r0Þ=tf ¼ 2w=Pr
Sd;u, Sd;v, Sd;w see Eqs. (2)–(4)

t; s time, s ¼ t=ðrr20=aeÞ
T temperature (�C)
u; u	 radial velocity, u ¼ u	=ðae=r0Þ
v; v	 circumferential velocity, v ¼ v	=ðae=r0Þ
w;w	 axial velocity, w ¼ w	=ðae=r0Þ
�ww cross-sectionally averaged axial velocity,

ð1=pÞ
R 2p
0

R 1
0
wrdrdu

x, y, z see Eqs. (14)–(16)

Greek symbols

a tilt angle in vertical plane of the torus

b thermal expansion coefficient ðK�1Þ
e porosity of porous media

U dimensionless temperature, ¼ ðT � TcÞ=
ðTh � TcÞ

Ub bulk temperature, ð1=�wwpÞ
R 2p
0

R 1
0
wUrdrdu

�UU cross-sectionally averaged temperature,

ð1=pÞ
R 2p
0

R 1
0

Urdrdu
u; h see Fig. 2

k eigenvalue of coefficient matrix

l dynamic viscosity of fluid (kg/(m s))

m kinematical viscosity of fluid ðm2=sÞ
q density of the fluid ðkg=m3Þ
r capacity ratio of porous media,ððqcÞfe þ

ðqcÞsð1� eÞÞ=ððqcÞfÞ

Superscript

	 variable with dimension

Subscripts

b bulk

c cooling, critical value

e equivalent parameter of porous media

f fluid

h heating

r radial direction

s solid

u circumferential direction

h axial direction

Fig. 1. The toroidal thermosyphon.
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which showed that the stability of the global flow in

porous media depends largely on the Prandtl number as

well.

2. Numerical research

2.1. Governing equations

We consider a loop, placed in a vertical plane, which

is heated at constant temperature Th, over the bottom

half and cooled at constant temperature Tc, over the top
half. The boundary conditions are similar to those in

[18], where the flow may take place due to buoyancy

formed by a negative vertical temperature gradient.

For the numerical analysis of the thermosyphon, the

flow was supposed to be three-dimensional, and all three

velocity components and pipe curvature were included.

The only simplifying assumptions were that:

1. The flow was symmetric about the vertical plane con-

taining the circle of radius formed by the pipe center-

line.

2. The flow was laminar and incompressible.

3. The flow had negligible Coriolis acceleration and neg-

ligible centripetal acceleration.

4. The flow and porous matrix had constant properties

(except for the use of the Boussinesq approximation

for the density of fluid, that qf ¼ qc½1� bðT � TcÞ�),
which are isotopic and homogeneous.

5. The solid matrix and liquid are in well energy equilib-

rium.

Those assumptions are usually believed to introduce

little difference into the numerical solution from the real

one [22,23].

The dimensionless form of the governing equations

for steady flow expressed in the coordinate system in

Fig. 2, are as follows, where u, v, w and U are all local

volume-averaged values [23,24].

Continuity

o

or
ðhuhhuÞ þ

o

ou
hrhhvð Þ þ o

oh
hrhuw
� �

¼ 0; ð1Þ

r-Momentum

uþ C0
Ejuju ¼ � oP

or
þ RaU sin h cosu þ Da

e
r2u
�

þ Sdu
�
;

ð2Þ

u-Momentum

vþ C0
Ejvjv ¼ � oP

rou
� RaU sin h sinu þ Da

e
r2v
�

þ Sdv
�
;

ð3Þ

h-Momentum

wþ C0
E wj jw ¼ � oP

Rþ r cosuð Þoh þ RaU cos h

þ Da
e

r2w
�

þ Sdw
�
; ð4Þ

Energy

ðV � rÞU ¼ r2U; ð5Þ

Fig. 2. The coordinate system for numerical programming.
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where hr ¼ 1, hu ¼ r, hh ¼ Rþ r cosu are the Lam�ee co-
efficients in coordinate transformation;

ðV � rÞ ¼ 1

hrhuhh

o

or
uhuhh �
� ��

þ o

ou
vhrhh �ð Þ

þ o

oh
ðwhrhu�Þ

�
;

r2 ¼ 1

hrhuhh

o

or
huhh

hr
� o
or

� ��
þ o

ou
hrhh

hu
� o

ou

� �

þ o

oh
hrhu

hh
� o
oh

� ��

are differential operators; and

Sd;u ¼ � 2

r2
ov
ou

� u
r2

þ sinu
rðRþ r cosuÞ v

þ cosu

ðRþ r cosuÞ2
v sinu

�
� u cosu � 2

ow
oh

�
;

Sd;v ¼
2

r2
ou
ou

� v
r2

� sinu
rðRþ r cosuÞ u

þ sinu

ðRþ r cosuÞ2
v sinu

�
� u cosu � 2

ow
oh

�
;

Sd;w ¼ 2

ðRþ r cosuÞ2
ou
oh

cosu

�
� ov
oh

sinu � w
2

�

are the transform products.

For Darcian flow, Eqs. (2)–(4) are much simplified as

follows:

u ¼ � oP
or

þ RaU sin h cosu; ð6Þ

v ¼ � oP
rou

� RaU sin h sinu; ð7Þ

w ¼ � oP
Rþ r cosuð Þoh þ RaU cos h: ð8Þ

The porosity is considered as a const that e ¼ 0:4.
C0
E is derived by Ergun geometrical function

CE ¼ 1:75

ð150e3Þ0:5
;

or

C0
E ¼ 1:75

150e3ð Þ0:5
� Da

0:5

Pr
: ð9Þ

The dimensionless boundary conditions are:

1. zero velocity at wall: u; v;wjr¼1 ¼ 0,

2. specified wall temperatures in cooling section: Ujr¼1 ¼
0;a6h6pþ a and in heating section: Ujr¼1 ¼ 1;p þ
a6h62pþ a,

3. symmetry about the plane U ¼ 0; p : o
ou ju¼0;p ¼ 0,

4. periodicity in h direction: u; v;w;U; P jh¼0 ¼ u; v;w;U;
P jh¼2p.

2.2. Numerical scheme

The differential equations were solved using a finite

difference computer program in FORTRAN language in

the coordinate system shown in Fig. 2. The staggered

grids were used, where the control volumes of u, v and w

were a half grid ahead of the main control volume of P

and U in r;u and h directions, respectively. A central

differencing method with second-order precision was

used. The program consulted that of [25,26] in treating

the singular units at the centerline. The SIMPLER al-

gorithm determined the pressure.

Multi-grid strategy: Due to the contradiction between

the special toroidal geometry and the limitation of the

node number, the length in the h direction of the grid

ðRþ r cosuÞDh is much larger than those in the radial

direction Dr and in u direction rDu (see Fig. 2) if R

is quite large. The iteration does not converge in this

case because the coefficients of the difference equation

are highly anisotropic. That difficulty was overcome by

the multi-grid strategy. A block correction multi-grid

method proposed by Hutchinson and Raithby ([27], the

1D2DAC manner, three grid layers) was introduced to

improve the convergence of pressure equation (mass

equation) and energy equation. This method had an

additive advantage that the mass and energy conserva-

tions in the whole space were automatically satisfied

when the iteration converged.

Computation flow: The procedure had converged

values independent of grid when the grid was as fine

as 40� 30� 100 nodes (in the r;u and h directions,

respectively). The r cells were not uniform, with finer

spacing near the wall. The h cells were finer near the

connections of the heating and cooling halves. The wall

was set for insulation at the connections (h � a ¼ 0; p) to
avoid singularity. The convection simulation started

from an initial velocity field wðrÞ ¼ 1� r2 and its con-

sistent temperature field. In all calculations presented

here, under relaxation factors of 0.35, 0.45,0.25,0.75 and

0.8 were applied to u, v, w, P and U (SLUR iterate). The

equations were solved with an alternating direction im-

plicit (ADI) method. The pressure correction is solved

iteratively until the sum of absolute residuals has fallen

by a factor of 10. The additive block correction was

performed at each time of P and U calculation and was

done once per 10 times of pressure correction. The cal-

culation was finished when the residual sum over all the

nodes of each equation is less than 1� 10�4, orP
Hm

i;j;k � Hm�1
i;j;k

			 			P
Hm

i;j;k

			 			 6 1� 10�4 H ¼ u; v;w; P ;U: ð10Þ

The iteration is about 2000 times which costs half a day

at a PC with Pentium 700 MHz CPU.

Code validity: The computer program was vali-

dated on several cases for which experimental data or
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analytical solutions were available. These cases were

chosen so as to verify that the distinct aspects of the

computer program were properly implemented. The

cases were:

1. two-dimensional natural convection in a porous an-

nulus,

2. three-dimensional natural convection in porous me-

dia in a rectangular cavity,

3. three-dimensional natural convection in Newtonian

fluid in the same torus as that in Lavine et al. [26].

Satisfactory agreement was obtained in every case.

2.3. Results and discussion

The flow behaviors depend on the five parameters

Ra, Pr, Da, R and a. The multi-grid strategy significantly
broadens the value scope of Ra so as to widely investi-

gate the effects of those parameters. We firstly discuss a

typical solution at Ra ¼ 50, Pr ¼ 1, Da ¼ 10�4, R ¼ 5,

a ¼ 10�, and then sum up the effects of some of those

parameters on flow behaviors.

Flow patterns: Since a > 0, the main flow is coun-

terclockwise. However, regions of flow reversal do exist

at both connections. Secondary or cross-stream motion

(i.e., motion perpendicular to the h direction) was also

predicted by the numerical analysis.

Fig. 3 shows the temperature and the axial veloc-

ity fields in the symmetry plane and a cross-sectional

plane. At the connections of the cooling half and the

heating half, intensive local flow reversals exist. The de-

tailed process is described by the following figures.

Fig. 4 shows the cross-sectional profiles of the tem-

perature and axial velocity at the neighborhood of the

right connection. In Fig. 4(a), before the flow enters the

cooling half (h � a < 0) the temperature curve is con-

cave, of which the edges keep at the highest value

(U ¼ 1) as the heating wall. The valley, formed by the

inversed flow coming from the entrance of the cooling

section, is at the inner wall. The inverse flow is heated by

the wall, rises up due to buoyancy and is brought back

by the main flow. Here an intensive secondary flow to-

ward the outer wall is formed (see Fig. 5(a)). At the

entrance to the cooling half (h � a > 0), the temperature

curve is convex, of which the edges keep at the lowest

value (U ¼ 0) as the cooling wall. The peak formed by

the hotter main flow is at the outer wall, which is

quickly cooled. The cooled liquid decelerates, of which

some amount starts to flow down along the inner wall

to form the above-mentioned inverse flow. As a re-

sult, a secondary flow toward the inner wall is formed

(a) (b)

Fig. 3. An example of typical temperature contours (a) and flow fields (b) (Ra ¼ 50, Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�).
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(see Fig. 5(b)). Next, the axial velocity profiles in Fig.

4(b) demonstrate the variance of the inverse flow and

main flow distributions along the torus. The shift is

consistent with that of the temperature shown in Fig.

4(a). The local flow reversal at the left connection can

also be reasoned in a similar way.

From those in Newtonian fluid, the temperature and

axial velocity fields of the flow in porous media mainly

differ in two ways. Firstly, the local flow re-circulation

only exists at the neighborhood of the connections, al-

though it wholly prevails in Newtonian fluid [25,26]. In

fact the heat transfer between fluid and tube wall is al-

ready finished shortly after entering the entrances be-

cause the flow speed is very low ðRe � 8Þ. The porous

matrix also quickly attenuates any axial vortex appeared

in the main flow. Since it is caused by the transverse

temperature gradients, the local inverse flow will not

take place if the fluid uniformly keeps at the same

temperatures as the walls. Secondly, in the area without

flow reversal, the flow velocity only varies in the vicinity

of the wall, which is the common feature of Darcian

flow. The resulted flow profile is a flat hat (see h ¼
�24:8� in Fig. 4(b)) but not a parabola.

According to the definitions of the velocity weighted

bulk temperature Ub and the area weighted average

temperature �UU, their difference also reflects the irregu-

larity of the axial velocity spatial distribution. The na-

ture provides an alternative way to determine the extent

of the flow field irregularity. Fig. 6(a) shows that the

difference can only be distinguished at the neighborhood

of the two connections. Near the entrance to the cooling

half, the region of higher temperature is associated with

higher velocity. Thus, the bulk temperature Ub will tend

to be larger than the average temperature �UU. Similarly,

Fig. 4. Temperature and axial velocity profiles in different cross-sectional planes (Ra ¼ 50, Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�).

Fig. 5. The secondary flow near the right connection (Ra ¼ 50,

Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�). (a) h � a ¼ �2:8�; (b)

h � a ¼ 2:8�.
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near the heating section entrance, the region of higher

temperature is associated with lower or even negative

velocity. Thus the bulk temperature will tend to be lower

in this region than the average temperature.

The peripherally averaged Nusselt number Nu is

shown in Fig. 6(b) as a function of h: The Nusselt

number decreases rapidly near the cooling and heating

section entrances, as a thermal boundary layer develops.

Throughout the remainder of the thermosyphon, how-

ever, Nu varies non-monotonically with h.
Fig. 7 shows the pressure field in the symmetry plane.

The highest pressure is at the entrance to the cooling

section. From here to the bottom, the potential gradu-

ally decreases along the torus at a variational speed. This

is a pressure consuming section, in which the flow is

driven by pressure potential. The pressure decreases

quicker at the entrance quarter of the heating section

because the flow has to overcome the inversed buoy-

ancy. From bottom to the entrance to the cooling sec-

tion, the pressure increases along the flow. This is a

pressure accumulating section, in which the flow is dri-

ven by buoyancy. Because the flow in the pressure ac-

cumulating section is driven by buoyancy, the formed

pressure gradients are different from that in the other

section. Fig. 7 shows that in the vicinity of the bottom

the pressure vertically varies, while in the other section

it axially varies.

Flow behavior variation with Rayleigh number for

a 6¼ 0. Varying the Raleigh number Ra while keeping the

other parameters at Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�
can reflect the effects of heating power. The average axial

velocity �ww increases linearly with Ra as shown in Fig. 8.

�ww is less than one ðRe < 2Þ when Ra < 20, which means

the convection is even slower than the heat diffusion.

The convection is not distinguishable in practice. Fig. 9

Fig. 7. A typical pressure contour in symmetric vertical plane

(Ra ¼ 50, Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�).

Fig. 8. Average axial velocity as a function of the Rayleigh

number (Pr ¼ 1, Da ¼ 10�4, R ¼ 5, a ¼ 10�).

Fig. 9. Axial distributions of bulk and average temperatures at

Ra ¼ 10 and 100 (a ¼ 10�).

Fig. 6. Average and bulk temperatures (a) and Nusselt number

(b) as functions of h (Ra ¼ 50, Pr ¼ 1, Da ¼ 10�4, R ¼ 5,

a ¼ 10�).
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shows the axial profiles of the bulk temperature Ub and

the average temperature �UU as functions of h at different

Ra. For small Ra (Ra ¼ 10), the discrepancy between Ub

and �UU is undistinguishable, which suggests that both

the convection and flow reversal are faint. As Rayleigh

number becomes larger (Ra ¼ 100) this discrepancy near

the connections also increases. This implies that the local

flow reversals there become more and more intensive.

Since the average velocity �ww still increases linearly with

Ra as shown in Fig. 8, the effects of flow reversal on

driving force are negligible.

Flow behavior variation with Rayleigh number for

a ¼ 0. As the Rayleigh number increases, the transition

of flow patterns under symmetric boundary conditions

(a ¼ 0) differs from that under the asymmetric ones. Let

Pr ¼ 1, Da ¼ 10�4, R ¼ 2, a ¼ 0 and keep in mind that

the simulation starts from a positive counter-clockwise

flow field. The converged flow field is different for dif-

ferent Ra. Two typical results are shown in Fig. 10. If

Rayleigh number is less than a certain critical value Rac,

no global flow appears in the torus (Fig. 10(a)). How-

ever, two roll-like local convections exist at the con-

nections. The rolls only spread to a short distance, and

the fluid in the rest sections remains at static states

without any flow motion and heat transfer. If Ra > Rac,
a solution with counter-clockwise global flow was got-

ten. Fig. 10(b) shows that the field structure is similar to

the above-motioned one at a ¼ 10�. When the simula-

tion started from a clockwise flow field similar results

were gotten. The iteration converged at the same solu-

tion as Fig. 10(a) if Ra < Rac, otherwise a solution with

clockwise global flow that is bilateral symmetric with

Fig. 10(b) were obtained. This suggests that the global

flow happens only if the Rayleigh number is larger than

a critical value. The critical value Rac rapidly increases

with the torus main Radius R. For example, Rac is be-
tween 15 and 20 when R is 2, while Rac is larger than 100
when R equals 5.

Non-Darcian effects on flow behavior: The non-Dar-

cian terms act on the flow behaviors in a very compli-

Fig. 10. Two typical temperature contours and flow fields at different Ra under symmetric boundary conditions. (a) Ra ¼ 50; (b)

Ra ¼ 150.
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cated way. The effect can be usually neglected for small

Da and Ra. For example, the average axial velocity �ww is

1.310 for Darcian flow and 1.307 for non-Darcian flow

at the parameters of Ra ¼ 50 and Da ¼ 10�4.

3. One-dimensional formulation

Numerical results showed that the three-dimensional

inversed flow only prevails near the connections. From

both the views of friction and buoyancy, the one-

dimensional formulation is reasonable at moderate

Rayleigh number.

3.1. Modeling

We consider the flow motion in the thermosyphon

filled with porous media under symmetric boundary

conditions (a ¼ 0). The full form of the momentum

equation with dimensions is

qc

e
D~VV
Dt

¼ �rP þ qf g
* þ l

e
r2~VV � l

K
~VV � CE

K1=2
qc

~VV
			 			~VV :

ð11Þ

By making u; v ¼ 0 and substituting the axial velocity

for average value w	 (where ow	=oh ¼ 0), Eq. (11) is

rewritten as follows:

qc

e
dw	

dt
¼� dP 	

R	dh
þgb Tð �TcÞcosh�

l
K
w	 � CE

K1=2
qc w

	j jw	:

ð12Þ

We integrate Eq. (12) to eliminate the pressure term and

transform the resulted equation into dimensionless

form, that is,

Pr0
d�ww
ds

¼ Ra
2p

Z 2p

0

U cos hdh � �ww� C0
E �ww
			 			�ww; ð13Þ

where Pr0 ¼ ðre=DaÞPr is the equivalent Prandtl number
of the porous medium.

Following that given in [21], consider an infinitesimal

cylindrical control volume of fluid in the loop, with

volume pr2R	dh. The rate of change of thermal energy in
the control volume is qfcpr

2
0R

	 dhðr oT
ot þ w	

R	
oT
ohÞ, which

must equal the amount of heat entering the control

volume. The heat entering the control volume is

�2pr0R	 dh � hðT � TcÞ in the upper half or 2pr0R	 dh �
hðTh � T Þ in the bottom half. The energy conversation

equation can be written

qfc r
oT
ot

�
þ w	

R	
oT
oh

�
¼

�2hðT � TcÞ=r0; 0 < h6 p;

2hðTh � T Þ=r0; p < h6 2p:

�
ð14Þ

Eq. (14) can be made dimensionless in the same way as

in Section 2, or

oU
os

 
þ �ww

R
oU
oh

!
¼ �NuU; 0 < h6p;

Nuð1� UÞ; p < h6 2p:

�
ð15Þ

Eqs. (13) and (15) are the one-dimensional governing

equations of Darcian flow in the torus. In order to find

the ordinary differential equations, we expand U in

a Fourier series U ¼ a0ðsÞ þ
P

anðsÞ cos nh þ
P

bnðsÞ
sin nh and substitute the series into two equations.

Multiplying the resulted equation of Eq. (15) by each

cos nh or sin nh, respectively, and integrating the pro-

duced equations from 0 to 2p can decouple a0ðsÞ anðsÞ
and bnðsÞ. The equations for �ww, a1ðsÞ and b1ðsÞ are in-
dependent of the others, which are:

dx=ds ¼ Pr0ð0:5Ra � y � x� C0
ExjxjÞ; ð16Þ

dy=ds ¼ �Nu � y � xz=R; ð17Þ

dz=ds ¼ �4Nu=p � Nu � zþ xy=R; ð18Þ

where x ¼ �ww, y ¼ a1ðsÞ, z ¼ b1ðsÞ.
(Since a0ðsÞ represents the average temperature of the

whole torus and has no influence on the flow stability,

we get the first right-hand term in Eq. (18) taking the

steady value that a0ðsÞ ¼ 0:5.)

3.2. Discussion

The model described by Eqs. (16)–(18) is also a

Lorenz system, which is similar in form to that for

Newtonian flow in [21] except with the different coeffi-

cients. This is natural because the pure fluid can be re-

garded as porous media in the limit of the porosity e ¼ 1.

For example, Eq. (11) becomes N–S equation as e in-

creases to unit. However, the flow behaviors are diverse

with variation in the equivalent Prandtl number Pr0.
We omit the Forchheimer term in Eq. (16) to simplify

the analysis. The three steady state points are

ð0; 0;�4=pÞ and"
�NuR

2Ra
pNuR

�
�1

�0:5

;�2NuR
Ra

2Ra
pNuR

�
�1

�0:5

;�2NuR
Ra

#
;

which stand for the static heat conduction and steady

flow in clockwise ()) and counter-clockwise (þ) direc-
tions. The steady states are independent of the Prandtl

number.

The two eigenvalues of the coefficient matrix at

ð0; 0;�4=pÞ are:

k1 ¼ �Nu; k2 ¼ 2Ra=pR� Nu: ð19Þ

According to the Center Manifold theory in non-linear

dynamics [28], a saddle-node bifurcation takes place at

RaPRac ¼ pNuR=2, where the static heat conduction

state gives way to the steady clockwise ()) or counter-
clockwise (þ) flow. The critical Rayleigh number Rac
increases with the torus radius R which agrees with the

numerical results. The longer the torus perimeter is, the
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larger the flow friction is. The global flow cannot occur

if the buoyancy due to temperature perturbation cannot

overcome the friction. Before flow appears, the Nusselt

number Nu should be strictly one and hence Rac ¼ pR=2.
However, the numerical results predicted two local

convection areas near the connections before global flow

appears. Hence the real critical Rayleigh number for

steady global convection occurring should be larger than

pR=2. The criterion for flow occurring is also unrelated

to the Prandtl number.

Similar stability analysis is carried on the other two

steady states. The characteristic equation of the coeffi-

cient matrix in either steady flow states is:

k3 þ Pr0
�

þ 2Nu
�
k2 þ Nu

2Ra
pR

�
þ Pr0

�
k

þ 2NuPr0
2Ra
pR

�
� Nu

�
¼ 0; ð20Þ

which possesses one negative real and two conjugate

complex solutions. The real parts of the two complex

solutions become positive (the Hopf bifurcation) when

the product of the coefficients of k2 and k is less than the
constant term, or

Ra >
pRPr0 Pr0 � 4Nu

� �
3Pr0 � 4Nuð Þ ; Pr0 > 4=3Nu; or

Ra <
pRPr0 Pr0 � 4Nu

� �
3Pr0 � 4Nuð Þ ; Pr0 < 4=3Nu: ð21Þ

Negative Rayleigh number is meaningless. The Lorenz-

like chaos could appear only if Pr0 > 4=3Nu and Ra >
ððpRPr0ðPr0 � 4NuÞÞ=ð3Pr0 � 4NuÞÞ. The Rayleigh num-

ber criterion for chaotic flow increases with Pr0. As

mentioned in the introduction, Pr0 is a measure of the

thermal inertia; a porous medium with small Pr0 has
either small friction or large thermal diffusivity, which

Fig. 11. Trajectories of Darcian flow at different Rayleigh numbers described by Eqs. (17), (18) and (22). (a) Stable static heat con-

duction; (b) stable steady convection, disturbance decaying without fluctuation; (c) stable steady convection, disturbance decaying with

fluctuation (Darcian flow); (d) stable steady convection, disturbance decaying with fluctuation (Forchheimer flow).
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favors the flow forming enough inertia force to reverse

the flow direction. This is the case in [11,12].

On the contrary, in the limit of Darcian flow that

Pr0 ! 1, the critical Rayleigh number goes to infinite as

well. That means the global flow is always stable as is the

case in Sen and Torrance [13]. For Darcy flow, Eq. (16)

becomes,

x ¼ 0:5Ra � y ð22Þ

Eqs. (17), (18) and (22) describe another model resem-

bling that in [13]. The model has the same solutions as

those of Eqs. (16)–(18). The criterion for flow occurrence

keeps also unchanged. But the two eigenvalues of the

coefficient matrix in either steady flow state are:

k1;2 ¼ 0:5Nu

(
� 1� 1

�
þ 4

2Ra
pNuR

�
� 1

��0:5)
: ð23Þ

Insofar as the global flow exists ðRac > pNuR=2Þ, k1;2
are two negative real values if Rac 6 5pNuR=8, and a

couple of conjugate complex values with negative real

part if Rac > 5pNuR=8. As a result, any disturbance to

the flow will be decayed. At different Rayleigh number,

the disturbance decaying modes are different. Fig. 11

shows the trajectories of flow converging at the steady

states from fictional initial ones at different Rayleigh

numbers, where the model was solved by a fourth-order

Runge-Kutta method. If Ra < pNuR=2, the trajectories

converge at static heat conduction state where x ¼ 0

(Fig. 11(a)). In Fig. 11(b) where pNuR=2 < Ra <
5pNuR=8, the trajectories converge at the steady flows

without fluctuation. When the two eigenvalues become

complex, the trajectories still converge at the steady

flows but in a periodic fluctuating mode (Fig. 11(c)). Fig.

11(d) shows the trajectories of Forchheimer flow, which

is similar to Fig. 11(c) apart from its scope.

As shown by the numerical results the flow in the

toroidal loop is almost one-dimensional due to the

configuration. The instability of the thermal boundary

layers can probably exist at high Rayleigh numbers but

has insignificant effect on the global flow. Hence the

conclusions drown above is reliable although it needs

experimental verification.

4. Conclusions

Natural convection in a toroidal thermosyphon filled

with porous media was numerically investigated and

modeled. The numerical work aims to simulate the

three-dimensional flow pattern and the variation of flow

and heat transfer modes with the parameters. After the

feasibility of one-dimensional formulating was exam-

ined, a one-dimensional model was proposed. Main

conclusions were drawn as follows:

1. The numerical results showed that obvious local re-

versal flows exist near the two connections. The sec-

ondary flow shifts the cross-sectional distributions

of the temperature and axial velocity. Comparing

with the natural convection in Newtonian fluid, the

local flow reversal in porous media only prevails a

short distance from the connections and brings no

apparent effects on the total friction and buoyancy.

The average axial flow is also very slower than that

in Newtonian fluid under the same heating power.

2. Under symmetric boundary conditions, the global

flow appears only if the Rayleigh number is larger

than a critical value. Although no global flow takes

place at small Rayleigh number, two local natural

convection rolls still exist near the connections.

3. The one-dimensional model showed that global flow

occurs when Rayleigh number becomes larger than

pNuR=2, which is smaller than the numerical values.

The stability of global flow depends largely on the

equivalent Prandtl number. The chaotic flow may

appear at small Prandtl numbers but is absent in Dar-

cian or Forchheimer flow. The results need experi-

mental verification.
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